Invert Pro

Assalamualaikum...

Tuhan telah memvonis setiap makhluk yang bernyawa pasti akan mati. Maka menulislah untuk menciptakan Keabadian, dan bersiaplah menjadi makhluk abadi dalam tulisan.

JelajahiGabung

Kamis, 23 Juni 2016

Pria Tua Berhati Mulia

Sudah satu bulan lamanya aku tinggal di sebuah kota kecil di ujung Sumatera ini. Aku jatuh hati padanya. Pemandangannya asri, dan masyarakatnya sangat ramah. Berbeda dengan kota – kota lain yang pernah kusinggahi sebelumnya.

Tempat yang paling kusukai di sini adalah pasar. Pasar? Ya. Kenapa? Karena di sini adalah jalur sutera perdagangan. Ramai setiap hari. Bahkan di hari – hari tertentu, pasar ini terlalu ramai sampai berdesak - desakan.

Hari itu, seperti biasa aku menghabiskan hari liburku dengan mengunjungi pasar. Menyusuri gang demi gang menikmati riuh – rendahnya perniagaan. Tiba – tiba di ujung gang yang sedang aku lewati itu terjadi suatu keributan. Penasaran, aku merangsek masuk ke kerumunan itu.

Pasar Kota Kecil
Illustration by Google Image
“Loh, Pak Dirman?? Ada apa ini ribut – ribut?” Aku mengenali salah seorang yang sedang berseteru itu. Aku biasa membeli buah – buahan padanya.

“Kembalikan uang saya, Pak!” Ujar seorang wanita dengan nada tinggi.

“Tapi saya tidak mengambil uang ibu. Saya hanya melihat dompet ibu tercecer di depan lapak saya. Sehingga saya kejar ibu untuk mengembalikannya. Sumpah, Bu. Sepeser pun saya  tak mengambil uang ibu.”

“Tidak mungkin. Anda pasti telah mengambil uang di dalamnya! Padahal Anda sudah tua, tapi masih saja nekad berbuat demikian...”

“Tapi bu, saya benar – benar tidak mengambil uang ibu...” Si kakek memelas minta pengertian.

“Maling mana mau mengaku! Kalau maling jujur, penuh penjara dibuatnya!” Sahut wanita itu ketus.

“Mbak! Nggak bisa begitu dong, Mbak. Mbak nggak bisa menuduh bapak ini tanpa bukti.” Aku membela.

“Mas nggak usah ikut campur!” Semburnya. . “Mas nggak tahu apa - apa. Bapak ini telah mencuri uang saya. Uang yang akan saya pergunakan untuk membayar biaya sekolah anak saya. Sudah tiga bulan menunggak. Hanya itu uang saya yang tersisa. Saya sudah tak memiliki uang lagi…” Lanjut wanita itu dengan berkaca – kaca.

Pak Dirman terdiam. Orang – orang yang menyaksikan keributan itu pun mendesak sang kakek untuk mengembalikan uang wanita itu.

Beberapa saat kemudian, Pak Dirman merogoh tas kecil di pinggangnya. “In... ambillah…” Kakek itu menyodorkan segepok uang.

Satu bulan berlalu. Aku masih belum lupa tentang kejadian itu. Sejak itulah, lapak Pak Dirman semakin hari semakin sepi. Bahkan sudah beberapa hari dia tak terlihat berjualan. “Kemana Pak Dirman?” pikirku.

Hari ini sangat teduh. Mendung terlihat sudah sangat berat. Tak lama lagi hujan pasti segera turun. aku bergegas menyusuri jalan berdebu yang sudah terlihat sangat sepi itu. Tiba – tiba, “Mas! Tolong saya, Mas…” Seru seseorang dari belakang.

Aku membalikkan badan. Ternyata yang memanggilku adalah wanita yang kehilangan uang waktu itu. “Oh, ada apa Mbak?” tanyaku penasaran.

“Tolong saya, Mas. Saya diikuti oleh orang misterius lagi!” Jawabnya gugup. Dia menggigil ketakutan.

“Orang misterius??”

“Iya, mas. Akhir – akhir ini saya sering diikuti oleh seseorang yang misterius. Menyeramkan sekali.”

“Masa’ sih, mbak?” Aku masih tak percaya.

“Sumpah, mas!” Sahutnya. “Ah, itu dia‼” Sambungnya lagi sambil menunjuk seseorang berjubah kelabu yang berjalan pelan ke arah kami. Dia refleks memposisikan dirinya di belakangku.

“Ayo, mas. Kita harus segera pergi. Saya takut dia hendak mencelakakan saya.” Desaknya menarik – narik tanganku. Aku bimbang. Penguntit itu terlihat terlalu lamban untuk menjadi seorang penguntit. Langkahnya pun gontai seperti zombie. “Aayo, maas…!” Desak wanita itu lagi.

BRUKK!!

Tiba – tiba orang misterius berjubah kelabu itu ambruk. Spontan aku berlari menghampirinya. Kupangku badan kurus nan ringkih itu. Kusingkap jubah lusuhnya. Sontak aku terkejut, “Pak Dirman??” Seruku.

Wanita itu pun terkesiap. Ia membelalakkan matanya seolah tak percaya orang misterius yang kerap menguntitnya adalah orang yang dituduhnya mencuri uang waktu itu.

“Saya... saya bukan pencuri... Saya... hanya... ingin memastikan… ibu itu... tidak kehilangan... dom... dompetnya lagi... Saya... kasihan... uang waktu itu... adalah... hasil dagang saya... saya kasihan... anaknya butuh biaya...”

Aku terpana mendengar pengakuannya. Begitu juga dengan wanita itu yang bersimpuh di  hadapanku.

“Uhukk... Uhuk...”

Kakek itu kesulitan bernapas. Matanya yang merah mengucurkan airmata. Badannya menggigil kedinginan.

“Bertahanlah, Pak! Saya akan panggil dokter!” Kataku.

“Tidak... perlu repot... mas... “ Jawabnya. “Waktu saya... sudah hampir habis...”

“Pak... jangan bicara seperti itu... Maafkan saya...!” Wanita itu histeris mengguncang – guncang badan Pak Dirman. “Maafkan saya, pak...” Ulangnya lagi dengan penuh penyesalan. Airmatanya membanjir. Kakek itu membalas dengan senyuman.

“Hhhhhhh...‼” Napasnya semakin tak beraturan. Tiba – tiba badannya mengejang seperti menahan rasa sakit yang teramat sangat. Beberapa saat kemudian, tubuh renta itu lemas terkulai. Tepat di pangkuanku.


Tetes demi tetes membasahi jalan berdebu ini. Rinainya semakin bertambah. Hujan deras mengguyur melepas kepergian pria tua berhati mulia itu. Aku mengusap wajahnya. “Semoga dia diberikan tempat yang layak di Sisi-Nya...” Ujarku lirih seraya bangkit menggendong tubuh renta itu.



Selasa, 21 Juni 2016

Kisah Romantik Dompet Antik


Saat aku berjalan pulang di suatu hari yang dingin, aku tersandung pada sebuah dompet. Penasaran, aku memungutnya. Dompet itu berbahan kulit, berwarna cokelat, dan terlihat sudah sangat usang. Tidak ada kartu identitas didalamnya. Hanya  berisi tiga lembar uang dan sebuah amplop kusut yang tampaknya sudah berada di sana selama bertahun-tahun. “duaribu rupiah, sepuluh ringgit, lima ringgit…” aku menyebutkan nominal tiga lembar uang itu. “jadii… duaribu limabelas…”

Dompet Achmad
illustration by google image
Lantas kubuka amplop itu. Ah, sepucuk surat. Mungkin disini ada petunjuk, pikirku. tercantum dateline-1955 disana. Berarti kemungkinan besar surat itu ditulis sekitar 60 tahun yang lalu. Cocok memang, jika disesuaikan dengan kondisinya yang telah kusut. Ia ditulis menggunakan tinta hitam dengan begitu cantik di atas kertas biru berhias bunga kecil di sudut kiri. Oh, sungguh penulis yang memiliki jiwa seni tinggi.

Achmad. Surat itu ditujukan kepada Achmad. Penulisnya mengaku bahwa ia tidak bisa melanjutkan lagi hubungan asmaranya dengan Achmad karena orangtuanya melarang. Meski begitu, dia juga menyampaikan bahwa sampai kapanpun dia akan selalu mencintai Achmad. Ditandatangani, Hannah.

Tulisan panjang itu sangat romantis dan indah. Benar - benar Surat Cinta yang mempesona. tapi disana tidak ada petunjuk apapun selain nama dan alamat Achmad. Aku harus pergi ke alamat yang tertulis disitu. Dompet antik ini pasti sangat berharga bagi Achmad. Saat ini dia pasti merasa sangat kehilangan.

Tok, tok,tok.
“permisii… benar ini rumah Pak Achmad?” tanyaku pada wanita yang sedang menggendong anak kecil itu. Dia tersentak, "Oh, benar! Dulu rumah ini memang milik Pak Achmad. Tapi dia sudah tidak tinggal disini lagi. Rumah ini telah kami beli sekitar 30 tahun yang lalu "

"Apakah Anda tahu di mana beliau tinggal sekarang?" Tanyaku.

"Saya tidak tahu. Yang saya ingat, Pak Achmad memiliki sedikit gangguan jiwa karena ditinggal pergi oleh kekasihnya. Setiap hari dia meratapi wanita yang bernama…”

“Hannah??” potongku penasaran.

“Yapp! Hannah‼ Saya punya nomor telepon rumahnya.”

Dia menyerahkan kartu nama padaku. Tanpa menunggu waktu lama aku menelpon. Suara diseberang menerangkan bahwa Hannah sekarang tinggal di sebuah panti jompo. Lantas dia menyebutkan nama dan alamat panti jompo tersebut.

Sialan! Semua ini hanyalah omong kosong. Rutukku dalam hati. Mengapa aku musti sibuk kesana-kemari mencari pemilik dompet lusuh yang hanya berisi tiga lembar uang dan sepucuk surat usang?? Huh! Aku melakukan hal yang tak berguna!

Namun demikian, akhirnya akupun mengunjungi panti jompo itu untuk menemui Hannah. "Ya, Ibu Hannah memang tinggal bersama kami." Jawab salah satu perawat panti.

Tok, tok, tok.
“Ibu Hannah, ada tamu. Tolong bukakan pintu…” sapa sang perawat.

“iya, tunggu sebentar…” sahut suara dari dalam. Terdengar sedikit parau namun masih terasa lembut.

Cekrek. Pintu dibuka. Berdiri dihadapanku nenek berambut perak manis dengan senyum hangat dan binar di matanya. Aku dipersilahkan masuk dan duduk bercerita padanya tentang dompet dan menunjukkan surat itu padanya. Disambutnya amplop itu. Matanya berkaca-kaca. Ia mengambil napas dalam-dalam lalu berkata, "Anak muda, surat ini adalah hubunganku yang terakhir dengan Achmad..."

Dia memalingkan muka sejenak. Tenggelam dalam pikiran dan kemudian berkata pelan, "Aku sangat mencintainya. Tapi aku baru berusia 16 tahun pada waktu itu dan orangtuaku merasa aku masih terlalu muda. Oh, padahal aku sangat mencintai Achmad…" Hannah menatap jendela kaca. Pikirannya menerawang jauh.

"Ya, aku sangat mencintainya." lanjutnya. "Achmad adalah orang yang indah. Jika Anda bertemu dengannya, katakan bahwa Hannah selalu memikirkannya, dan" Ia terdiam. Ragu melanjutkan ucapan.

“dan apa…??” desakku penasaran.

"dan katakan padanya, Hannah masih sangat mencintainya. Kau tahu? Aku sangat merindukannya. Hati ini hanya mampu diisi oleh dirinya… " katanya tersenyum sambil menggigit bibir bawahnya. Airmatanya tak terbendung lagi.

"Aku tidak pernah menikah. Aku tak sanggup menikah dengan orang lain. Tiada seorangpun yang bisa menggantikan Achmad..." airmatanya semakin membanjir. Didekapnya amplop beserta surat biru itu erat - erat.

Aku termangu. Sungguh, kesetiaan abadi yang tak terperi. Aku berterima kasih pada Hannah dan berpamitan sambil meninggalkan janji akan menyampaikan pesannya kepada Achmad.

Aku berjalan gontai menyusuri lorong panti. Kulirik di beranda ada sebuah bangku panjang. Kuputuskan untuk beristirahat disana. Mempertanyakan pada diriku sendiri mengapa aku sampai berbuat sejauh ini hanya demi dompet dan dua orang tua yang tak jelas asal usulnya. “Apa yang harus kulakukan selanjutnya? Kemana aku harus mencari pemilik dompet ini?” desahku sambil menimang-nimang benda antik itu.

"Hei! bukankah itu milik bapak berkacamata di lantai tiga?”

Aku tersentak. Seorang penjaga telah berdiri dihadapanku. Mungkin aku terlalu jauh menghayati kasus ini hingga tak menyadari kehadirannya.

Dia selalu kehilangan dompet itu. Saya telah beberapa kali menemukan dompet itu tercecer."

“Achmad?”

“Ya! Bapak Achmad!” seru penjaga itu. “setiap dia pergi dia pasti menghilangkan dompet itu.”

Aku bergegas menuju kantor perawat. Kukatakan bahwa aku ingin mengunjungi Bapak Achmad di lantai tiga. Kami langsung menuju lantai tiga. Dengan perasaan harap-harap cemas aku mengikuti langkah si perawat menyusuri koridor. “kamar paling ujung.” Si perawat menunjuk kamar yang dimaksud. Ah, pintunya masih terbuka. Penghuninya pasti belum tidur, pikirku.

“permisi, Pak Achmad…”

“Saya sedang mencari barang saya yang hilang.” Sahut kakek berkacamata itu tanpa menoleh dan terus mengacak-acak seisi kamarnya.

"Anda mencari ini?” Aku menyerahkan dompet yang aku temukan kemarin.

Ia menghentikan aksinya dan berpaling kepadaku. Dipandanginya dompet ditanganku. Sejurus kemudian sepasang mata sayu itu mengarah padaku. Memperhatikanku dari ujung kepala hingga kaki.
“itu milik saya!” hardiknya seraya merampas dompet itu dariku.

“baiklah. Permisi.” Aku membalikkan badan. “Surat cinta itu romantis. Hannah sangat mencintaimu. Dan masih sangat mencintaimu.” Aku berlalu meninggalkan orangtua itu dan si perawat.

“hei, tunggu‼” cegah sang kakek. "Anda membaca surat didalam dompet ini?"

"Bukan hanya membacanya. Saya juga bertemu dengan penulisnya."

"Hannah?? Anda tahu di mana dia?” wajahnya menyeringai tak percaya.

“Ya.” Jawabku singkat.

dimana dia?? Bagaimana keadaannya? Apakah dia menceritakan tentang aku? Tolong tolong katakan padaku"

"Dia baik – baik saja. Masih seperti Hannah yang Anda kenal." Jawabku pelan.

Dia tersenyum simpul. Diraihnya tanganku lalu berkata, “Tolong pertemukan saya dengannya. Sudah lama aku meredam rasa rindu ingin bertemu. 60 tahun lalu. Sejak dia memberiku surat itu, tak pernah lagi kudapati dia dalam hidupku. Kuhabiskan waktuku selama 60 tahun itu untuk mencarinya, tapi tak kunjung bersua. Sampai sekarang, cinta ini masih suci hanya untuknya. Tiada satu perempuan pun sanggup gantikan dirinya. Saya mencintainya. Sungguh sangat mencintainya. Jadi, tolong… tolong pertemukan aku dengannya…”

Hatiku gamang menyaksikan ekspresi orangtua itu. Dia benar – benar tulus dengan ucapannya itu. Suaranya bergetar, airmatanya pun tumpah membasahi pipi keriputnya.

"Achmad…” suara lembut nan sedikit parau menyebut nama kakek itu dari depan pintu. Lantas kami menoleh kearah sumber suara.

"Hannah…??” sahut Achmad lirih. “Benarkah itu engkau, Hannah? Hannah kekasihku?” Kakek itu masih tak percaya yang berdiri didepan pintu sambil menyebut namanya itu adalah sosok wanita yang dicari-carinya selama ini.

“iya, Achmad. Ini aku, Hannah. Hannah yang selalu mencintaimu…" Hannah tersenyum.

“kemarilah, kekasihku…” ujarAchmad membentangkan tangannya. Tak ayal lagi, Hannah menghamburkan diri. Achmad pun mendekapnya erat. Tangis bahagia pecah diantara mereka berdua.

“Sungguh, sebuah reuni yang indah…" desis si perawat yang tiba-tiba saja menyandarkan kepalanya ke pundakku.

“Ya, pertemuan setelah sekian lama… Tuhan memanglah Maha Perencana. Semua akan indah pada waktunya…” jawabku dengan merangkulkan tangan kiriku padanya.

illustration by google image
illustration by google image
Satu minggu kemudian aku menerima sms, "Dapatkah Anda berkunjung ke Panti Jompo Senja Sejahtera pada hari selasa? Bapak Achmad dan Ibu Hannah akan melakukan pernikahan!"

“Wow! Hahaha, akhirnya! Yeaayy…‼” aku berteriak kegirangan. Tak sabar rasanya menantikan hari selasa yang hanya tinggal tiga hari lagi.

Acara yang ditunggu – tunggu pun tiba. Pernikahan yang indah dengan disaksikan oleh keluarga besar panti jompo. Hannah tampak serasi dengan gaun krem ​ringan bersanding dengan Achmad yang mengenakan jas biru tua.

Ah, puas rasa hatiku melihat resepsi ini. Tak sia – sia rupanya pengorbananku mencari pemilik dompet antik berisi surat usang dan uang duaribu limabelas. Ya, mereka menikah di tahun yang sama dengan jumlah nominal uang di dompet itu. Akhir yang sempurna untuk kisah cinta yang luar biasa.


Fiktif by Menuang IdeRestu Jati Prayogi.

Jumat, 20 Mei 2016

Bank Soal Ujian Nasional (UN) SMK Matematika



SOAL UN MATEMATIKA
01.    Jumlah n suku pertama deret aritmatika adalah Sn = 2n2 – 6n. Beda deret itu adalah
          (A)     -4                               (D)      6
          (B)      3                                 (E)       8
          (C)      4
02.    Un suku ke n barisan aritmatika.
          Jika matriks A =  dan U6 = 18 ;         U10 = 30 maka  determinan matriks A adalah
          (A)     -30                             (D)      12      
          (B)      -18                             (E)       18
          (C)      -12

03.    Log a + log (ab) + log (ab2) + log (ab3) + …. adalah deret aritmetika. Jumlah 6 suku pertama deret itu.
          (A)     6 log a + 15 log ab
          (B)      6 log a + 12 log ab
         (C)    6 log a + 18 log ab
(D)    7 log a + 15 log ab
(E)      7 log a + 12 log ab

04.    Jumlah n suku pertama deret aritmetika         Sn = 2n2 – n. Jumlah n suku berikutnya adalah
          (A)     4n2 – 2n                   (D)      2n2 – 2n
          (B)      6n2 – 2n                   (E)       6n2 – n
          (C)      4n2 + 2n

05.    Jumlah n suku pertama deret aritmetika            Sn = (pn + 5) (2n – q) + 5q.
          Jika suku pertama 15 dan bedanya 4, nilai dari  p + q  sama dengan
          (A)     2                                 (D)      -1
          (B)      1                                 (E)       -2
          (C)      0

06.    Jumlah 5 buah bilangan yang membentuk barisan aritmetika adalah 75. Jika hasil kali bilangan terkecil dan terbesar adalah 161, maka selisih bilangan terbesar dengan yang terkecil sama dengan 
          (A)     14                              (D)      20
          (B)      15                              (E)       30
          (C)      16
07.    Seorang karyawan menabung dengan teratur setiap bulan. Uang yang ditabungnya setiap bulan dengan bulan sebelumnya selisih yang sama. Apabila jumlah seluruh tabungannya dalam 12 bulan pertama adalah Rp.152.000 dan dalam 20 bulan  pertama Rp. 480.000 maka besar uang yang ditabungkan di bulan ke 10 adalah
          (A)     Rp. 23.000               (D)      Rp. 97.000       
          (B)      Rp. 27.000               (E)       Rp. 28.000
          (C)      Rp. 64.000

08.    Suku ke-n barisan aritmetika adalah               Un = 6n + 4. Diantara tiap dua sukunya disisipkan dua suku yang baru, sehingga terbentuk deret aritmerika baru. Jumlah n suku pertama deret baru adalah
          (A)     Sn = n2 + 9n            (D)      Sn = n2 – 6n
          (B)      Sn = n– 9n             (E)       Sn = n2 + 6n
          (C)      Sn = n2 + 8n

09.    Jumlah bilangan-bilangan antara 1 dan 150 yang habis dibagi 4 tetapi tidak habis di bagi 7 adalah 
          (A)     2382                          (D)      2412
          (B)      2392                          (E)       2422
          (C)      2402

10.       Tiga buah bilangan membentuk deret aritmetika. Jika suku ke dua dikurangi 2 dan suku ke tiga ditambah 2, maka diperoleh deret geometri. Jika suku pertama deret semula di tambah dengan 5 maka ia menjadi setengah dari suku ke tiga. Jumlah deret aritmetika semula adalah
          (A)     42                              (D)      48
          (B)      44                              (E)       50
          (C)      46

11.    Untuk k > 0 bilangan (k – 2) , (k – 6) dan          (2k + 3) membentuk tiga suku pertama deret geometri. Jumlah n suku pertama deret tersebut adalah
          (A)     ¼ (1 – (-3)n)            
          (B)      - ½ (3n – 1)
          (C)      - ¼ (1 – 3n)
(D)        - ½(1 – (3)n)
(E)      ¼ (1 – (3)n)
12. akar persamaan kuadrat
          x2 –(2k + 4)x + (3k + 4) = 0. Ke dua akar itu bilangan bulat dengan k konstan.
          Jika merupakan tiga suku pertama deret geometri maka suku ke n deret itu
          (A)      -1                               (D)      1 +(-1)n             
          (B)      2(-1)n                        (E)       1 – 1(-1)n          
          (C)      -(-1)n
               
13.    Diketahui deret geometri dengan suku ke enam 162 jumlah logaritma suku ke dua,     ke tiga, ke empat, dan ke lima sama dengan     4log 2  +  4log 3, maka rasionya adalah
          (A)     1/2                             (D)      3
          (B)      1/4                             (E)       2
          (C)      1/3

14.    Tiga buah bilangan positif membentuk barisan geometri dengan rasio > 1. Jika suku tengahnya ditambah 4 maka terbentuk barisan aritmetika yang jumlahnya 30. Hasil kali ke tiga bilangan semula adalah…
          (A)     64                              (D)      343
          (B)      125                            (E)       1000  
(C)         216                           

15.    Diketahui A = 2 dan
          B = 1 + 9(0,1) + 9(0,1)+ 9(0,1)3 + … + 9(0,1)6784
          Pernyataan yang benar adalah
          (A)     A < B                         (D)      A = B
          (B)      A > B                         (E)       A = ½ B
          (C)      a = 0,9 B

16.    Diketahui barisan tak hingga
         Jika t = p/3 maka hasil kali semua suku barisan itu adalah
          (A)     0                                 (D)      1/2
          (B)      1/16                           (E)      
          (C 
17.    Deret geometri
          1 + cos 2x  + cos22x  +  cos32x + … konvergen ke A dan deret geometri 1 – tan2x  +  tan4x  –   …..
          konvergen ke B,  maka nilai  2AB =
          (A)     tan2 x untuk semua x real
          (B)      tan2 x untuk |x| < p/4
(C)         cot2 x untuk x semua x real
(D)        cot2 x untuk 0 < x < p/2
(E)      cot2 x untuk 0 < x < p/4
18.    Jumlah deret
          S = 1 + log cos x +  log2cos x + …mempunyai
27
 apabila
          (A)     ½ < s < 1                  (D)      s > ½  
          (B)      ½ < s < 2                  (E)       s > 1
          (C)      s < ½

19.    Perhatikan lingkaran-lingkaran yang berpusat pada garis y = x yang menyinggung sumbu-sumbu x dan y. lingkaran pertama berpusat di (5 , 5), lingkaran ke dua berpusat di  lingkaran ke tiga bepusat di  dan seterusnya. Jumlah luas semua lingkaran tersebut sama dengan
          (A)     100/3 p satuan luas        
          (B)      37,5 p satuan luas           
          (C)      40 p satuan luas
          (D)     42,5 p satuan luas
          (E)      50 p satuan luas

20.    Jumlah suku deret geometri tak berhingga adalah 7. sedangkan jumlah suku-suku yang bernomor genap adalah 3, maka suku pertama deret tersebut adalah 
          (A)     3/7                             (D)      7/4
          (B)      3/4                             (E)       7/3
          (C)      4/3

21.    Sebuah bola tennis jatuh dari ketinggian 5 m dan memantul kembali dengan ketinggian 2/3 kali tinggi sebelumnya. Pantulan berlangsung  terus menerus hingga bola berhenti, maka panjang seluruh lintasan bola adalah 
          (A)     15 m                         (D)      30 m
          (B)      20 m                         (E)       35 m
          (C)      25 m

22.    Jika  1 + 3 + 5 + 7 + . . . + Uk = 121, maka nilai dari U2k + U2k+1 + . . . + U3k = 
          (A)     583                            (D)      648
          (B)      600                            (E)       798
          (C)      636

24.    Jika A, B, dan C merupakan sudut – sudut suatu segitiga yang membentuk deret aritmatika,    maka cos(A + C) – cosB =
          (A)     0                                 (D)      - 1      
          (B)      1                                 (E)       - Ö3
          (C)      Ö3

25.    Antara bilangan x dan y disisipkan 5 bilangan sehingga ketujuh bilangan tersebut membentuk barisan aritmatika. Jika jumlah bilangan yang disisipkan sebesar 45,
          Maka nilai    x + y =
          (A)     16                              (D)      24
          (B)      18                              (E)       28
          (C)      20

26.    Diketahui jumlah tiga suku pertama deret aritmatika adalah – 18 dan jumlah tiga suku terakhir sama dengan 36. Jika jumlah semua suku deret tersebut adalah 27, maka banyaknya suku deret aritmatika sama dengan
          (A)     8                                 (D)      12
          (B)      9                                 (E)       15
          (C)      10

27.    Jumlah semua suku suatu deret geometri yang konvergen adalah dua kali suku pertamanya sedangkan jumlah pangkat tiga setiap suku – sukunya adalah 64/7, maka suku ketiga deret tersebut adalah
          (A)     1/2                             (D)      1/16
          (B)      1/4                             (E)       1/32
          (C)      1/8

28.    Kurva y = x2 – nx + 1 memotong sumbu x di  titik (a , 0) dan (b , 0) serta memotong sumbu y di titik (0 , c). Jika susunan bilangan a , b , dan c membentuk barisan aritmatika. maka barisan tersebut akan membentuk deret geometri jika suku ketiga ditambah
          (A)     9/2                             (D)      - 9/8
          (B)      9/4                             (E)       - 9/4
          (C)      9/8

29.    Suatu deret geometri konvergen, suku kedua dan suku kelima berbanding sebagai 8 : 1.
          Jika diketahui jumlah dua suku pertama 9, maka jumlah tak hingga deret tersebut adalah
          (A)     6                                 (D)      24      
          (B)      12                              (E)       32
          (C)      18

30.    Sebuah deret geometri tak hingga konvergen dengan jumlah 6. Jika suku pertama deret ini a, maka
          (A)     - 6 < a < 0                 (D)      - 12 < a < 0
          (B)        0 < a < 6                 (E)       -  12 < a < 12
          (C)        0 < a < 12

31.    Besar suku ke p dari suatu deret geometri adalah 2p. Sedangkan suku ke 2p adalah p. Jumlah p suku pertama adalah 
          (A)                           (D)     
          (B)                            (E)      
          (C)     
               
32.    Untuk r > 0, dan  jumlah 6n suku pertam deret geometri tak hingga adalah sembilan kali jumlan 3n suku pertama deret tersebut. Maka nilai n yang memenuhi adalah   
          (A)     log 2                       (D)      2r log 4              
          (B)      log 4                       (E)       2r log 8
          (C)      log 8

33.    2r + s , 6r + s , 14r +  s adalah tiga suku berturut – turut dari barisan geometri dan r adalah rasio. Barisan geometri tersebut akan membentuk barisan aritmatika jika suku kedua ditambah dengan
          (A)     2                                 (D)      8
          (B)      4                                 (E)       10
          (C)      6
         
34.    Apabila susunan bilangan berikut,
          2log x + 4  ,  2log x  ,  2, …
          membentuk barisan geometri, maka jumlah tak hingga barisan tersebut adalah
          (A)     16                              (D)      8
          (B)      14                              (E)       6
          (C)      12

35.    Un menyatakan suku ke n deret geometri.  Jika U1 + U3 = 18 dan U2+ U= 12.       
          Maka   U5 =
          (A)     16/13                        (D)      38/13
          (B)      28/13                        (E)       44/13
          (C)      32/13

36.    Untuk n ® ¥ , maka penyelesaian pertidak-samaan berikut
          1 < (xlog2) + (xlog2)2 + . . . + (xlog2)n < 3
          adalah
          (A)     21/3  <  x  <  2           (D)      21/3 < x < 4
          (B)      1  <  x  <  21/3          (E)       2 < x < 4
          (C)      21/3  <  x  <  24/3

37.    Tiga bilangan a , b dan c membentuk deret aritmatika dengan beda 2. Jika , maka
          (A)     35                              (D)      15
          (B)      28                              (E)       12
          (C)      21

38.    Sebuah buku terdiri dari 60 halaman, dimulai halaman 1. Jika 2 lembar yang berurutan dari buku tersebut di sobek, ternyata jumlah halaman buku yang tersisa 1780, maka selisih kuadrat halaman terkecil dan yang terbesar yang tersobek adalah
          (A)     21                              (D)      75
          (B)      48                              (E)       84
          (C)      69

39.    Jumlah sampai tak hingga dari deret konvergen
          (16log x) + (16logx)2 + (16logx)3 + . . . +  =  S
          y = log (1 - | S – 2 | ) ada nilainya untuk
          (A)     2  <  x  <  4               (D)      4  <  x  <  8       
          (B)      2  <  x  <  6               (E)       4  <  x  <  6
          (C)      2  <  x  <  8

40.    Akar-akar persamaan
          28x – 8 – 40.24x – 8 + 1 = 0
          adalah suku pertama dan suku kedua sebuah deret geometri tak hingga yang konvergen.
          Jumlah deret tersebut adalah
          (A)     25/16                        (D)      25/4
          (B)      25/12                        (E)       25/2
          (C)      25/8

40.    Jika a =          
          maka untuk 0  <  x  <  p/2, deret
          1  +  alog sin x + alog2sinx + alog3sinx + …
          konvergen hanya pada selang
          (A)     p/6  <  x  <  p/2       
          (B)      p/6  <  x  <  p/4
          (C)      p/4  <  x  <  p/3       
          (D)     p/4  <  x  <  p/2
          (E)      p/3  <  x  <  p/2

41.    Diketahui a dan b adalah akar-akar persamaan x2 – 2x + k = 0 dan
          a – 5/2 , a + b , a + 5 merupakan bariasan geometri dengan suku – suku positif.
          Nilai k adalah
          (A)     2                                 (B)       - 3
          (C)      3                                 (D)      - 2
          (E)      6


42.    Jika x , y , z membentuk barisan geometri,
          maka
          (A)     1/x                             (B)       1
          (C)      1/y                             (D)      2
          (E)      1/2

43.    Jika suku pertama deret geometri  dengan m > 0 sedangkan suku ke 5 adalah m2, maka suku ke 21 adalah
          (A)                       (B)      
          (C)                        (D)     
          (E)     

44.       Suatu deret geometri dengan suku ke-5 dan suku ke-8 berturut-turut adalah x3 dan x4Öx, maka jumlah enam suku pertama deret itu adalah
            (A)       (Öx – 1) (x3 + x2 + x)   
            (B)       (Öx – 1) (x2 + x + 1)
            (C)       (Öx + 1) (x3 + x2 + x)   
            (D)       (x3 + x2 + x)
            (E)       (Öx + 1)

45.       Pada gambar dibawah ini, D A1OB1 sama kaki dengan sudut puncak O = 900 dan OA2 garis tinggi, DA2OB2 sama kaki dengan sudut puncak O = 900 dan OA3 garis tinggi, DA3OB3 sama kaki dengan sudut puncak       O = 900 dan OA4 garis tinggi dan demikian seterusnya. Jika OA1 = 500Ö2, sisi miring dalam segitiga ke n lebih kecil dari 100, untuk
O